本/雑誌
Pythonではじめる教師なし学習 機械学習の可能性を広げるラベルなしデータの利用 / 原タイトル:Hands‐On Unsupervised Learning Using Python
AnkurA.Patel/著 中田秀基/訳
3960円
ポイント | 1% (39p) |
---|---|
発売日 | 2020年04月発売 |
出荷目安 | メーカー在庫見込あり:1-3週間
※出荷目安について |
追跡可能メール便利用不可商品です
著者・出版社・関連アーティスト
商品説明
教師なし学習はラベル付けされていないデータから学習する機械学習の一種です。現在の機械学習では大量のラベル付きのデータを用いる教師あり学習が主流ですが、ラベルを付けるには膨大なコストがかかります。現実世界に機械学習を適用していくためには、ラベル付けを必要としない教師なし学習の重要性が増してくると考えられます。本書は実践的な視点から、データにある隠れたパターンを特定し、異常検出や特徴量抽出・選択を行う方法を紹介します。ラベルなしデータを有効に利用することで、機械学習の可能性を各段に広げる教師なし学習の本質に迫ります。さらに、変分オートエンコーダ(VAE)や敵対的生成ネットワーク(GAN)、制限付きボルツマンマシン(RBM)などの生成モデルも紹介します。
関連記事
収録内容
1 | 1部 教師なし学習の基礎(機械学習エコシステムにおける教師なし学習の立ち位置 |
2 | 機械学習プロジェクトのはじめから終わりまで) |
3 | 2部 scikit‐learnを用いた教師なし学習(次元削減 |
4 | 異常検出 ほか) |
5 | 3部 TensorFlowとKerasを用いた教師なし学習(オートエンコーダ |
6 | オートエンコーダハンズオン ほか) |
7 | 4部 TensorFlowとKerasを用いた深層教師なし学習(制限付きボルツマンマシンを用いた推薦システム |
8 | 深層信念ネットワークを用いた特徴量検出 ほか) |